sábado, 29 de agosto de 2015

René Descartes

René Descartes



Filósofo, matemático e fisiologista, o francês René Descartes  é considerado o pai da matemática e da filosofia moderna. Nasceu em La Haye (em 1802, a cidade passou a ser chamada de La Haye-Descartes), província de Touraine, no dia 31 de março de 1596. Seu pai era advogado, juiz, conselheiro do parlamento da província de Rennes. Possuía título de primeiro grau de nobreza  (escudeiro). A mãe de Descartes morreu quando ele tinha apenas 1 ano (vítima de complicações pós-parto). René foi criado por uma babá e por sua avó, embora sempre tenha tido contato com o pai.
Aos 9 anos começou seus estudos no colégio jesuíta La Flèche, no qual estudou gramática, poética, retórica  (Humanidades), Filosofia e Matemática (escolástica), até 1614. Sua saúde, nessa época era frágil, o que fez com que ele adquirisse um hábito que manteve por quase toda a vida: permanecia deitado em sua cama até tarde, meditando.
Atendendo a vontade de seu pai, ainda em 1614 entrou para a Universidade de Pointier, onde cursos direito (curso com duração de 2 anos). Formou-se em 1616, mas não exerceu a profissão.
Em 1618 Descartes viajou à Holanda, onde se alistou para combater os espanhóis ao lado das tropas holandesas de Maurício de Nassau. Nessa ocasião, conheceu e ficou amigo do médico Isaac Beckman, que o influenciou a estudar matemática e física. Em 1619, após assistir a coroação do Imperador Maximiliano da Baviera, em Frankfurt (Alemanha), alista-se no exército do novo Imperador. Retira-se em seguida, assim que Maximiliano declara guerra ao Rei Frederico da Boémia.
Na noite entre os dias 10 e 11 de novembro de 1619, Descartes tem três sonhos que ele próprio interpreta como uma premunição de seu destino: inventar uma "ciência admirável", na qual estariam unificados todos os conhecimentos humanos.
Em 1621, Descartes renuncia à carreira militar de forma definitiva, com o objetivo de dedicar-se exclusivamente às ciências e a filosofia. Para tanto, em 1623 retornou a sua cidade natal, onde vendeu as terras e a propriedade que herdara. Com isso, pôde manter seu conforto, embora sem luxos. Após a venda, viajou para a Itália (estabeleceu-se em Veneza), onde permaneceu até 1625.
Voltando da Itália, passa a viver em Paris, onde se ocupa da Óptica, Astronomia e Matemática.
A partir de então, passa a redigir vários esboços e mesmo obras que não chegou a publicar em vida. Algumas se perderam. Em 1629, se instala na Holanda, onde permanece até 1649.
Entre 1629 e 1633, Descartes redige o Tratado do Mundo, mas não o publica por receio da Inquisição, que acabara de condenar Galileu. A primeira obra de Descartes teve como título “Essays Philosophiques”. A introdução ficou mais famosa que a própria obra: O discurso do método, onde, na quarta seção, encontra-se sua frase mais famosa - "Penso, logo existo".
Nos anos seguintes, produziu as seguintes obras:
  • 1641 - Meditações sobre a filosofia Primeira; Objeções e Respostas.
  • 1644 - Princípios da Filosofia.
  • 1647/48 - Descrição do Corpo Humano.
  • 1649 - As Paixões da Alma.
Em 1649 Descartes deixa a Holanda e passa a viver em Estocolmo, a convite da rainha Cristina da Suécia (para ser seu preceptor e conselheiro).
No frio da Suécia, Descartes passou a sair da cama cedo (ao contrário do que fez a vida toda), pois ministrava aulas para a Rainha às 5 horas da manhã. Fragilizado pela mudança de hábitos e pelo frio intenso, uma gripe acabou se transformando em pneumonia, doença que causou sua morte em 11 de fevereiro de 1650.

Fonte: http://www.infoescola.com/filosofos/rene-descartes/

A MATEMÁTICA DE RENÉ DESCARTES (1596 – 1650)


René Descartes deve ser considerado um gênio da Matemática, pois relacionou a Álgebra com a Geometria, o resultado desse estudo foi a criação do Plano Cartesiano. Essa fusão resultou na Geometria Analítica. Descartes obteve grande destaque nos ramos da Filosofia e da Física, sendo considerado peça fundamental na Revolução Científica, por várias vezes foi chamado de pai da Matemática moderna. Ele defendia que a Matemática dispunha de conhecimentos técnicos para a evolução de qualquer área de conhecimento.

O Sistema de Coordenadas Cartesianas, mais comumente conhecido como Plano Cartesiano, consiste em dois eixos perpendiculares numerados, denominados abscissa (horizontal) e ordenada (vertical), que tem a característica de representar pontos no espaço.

Descartes utilizou o Plano Cartesiano no intuito de representar planos, retas, curvas e círculos através de equações matemáticas. Os estudos iniciais da Geometria Analítica surgiram com as teorias de René Descartes, que representavam de forma numérica as propriedades geométricas. A criação da Geometria Analítica por Descartes foi fundamental para a criação do Cálculo Diferencial e Integral pelos cientistas Isaac Newton e Leibniz. O Cálculo se dedica ao estudo das taxas de variação de grandezas e a acumulação de quantidades, sendo de grande importância na Física, Biologia e Química, no que diz respeito a cálculos mais complexos e detalhados.

Além do Cálculo e da Geometria Analítica, os estudos de Descartes permitiram o desenvolvimento da Cartografia, ciência responsável pelos aspectos matemáticos ligados à construção de mapas.
Por Marcos Noé
Graduado em Matemática
Equipe Brasil Escola
          


domingo, 23 de agosto de 2015

Se o mundo fosse uma aldeia


Programa TV Educação Financeira - 1ª temporada
















Infelizmente o episódio 14 não está disponível. 








domingo, 16 de agosto de 2015

Porcentagem

Lista 1(Aumentos e descontos sucessivos)


1 - Uma mercadoria que custava R$ 24,00 foi vendida com abatimentos sucessivos de 30% +20%+10%. Pergunta-se:

a)Por quanto foi vendida?

b)Qual o percentual total do abatimento?

2 - Na compra de uma mercadoria foi obtido abatimentos sucessivos de 20%+10%+5% se o total pago foi R$ 273,60, pergunta-se:

a)Qual o valor da mercadoria antes dos abatimentos?

b)Qual o percentual total do abatimento?

3 - Um produto cujo preço era de R$ 36,00, sofreu aumentos sucessivos de 30%+25%.
Pergunta-se:

a)Qual o preço atual?

b)Qual o percentual do aumento?

4 - O preço de um objeto foi aumentado, sucessivamente 10%, 10% e 20%, passando a custar R$ 450,12. Qual era o preço inicial?


5 - Uma mercadoria sofreu dois aumentos sucessivos de 20%. Na venda foi concedido um desconto de 15%, pagando o comprador R$ 24,48. Qual era o preço inicial desta mercadoria?

6 - Uma mercadoria custava R$ 75,00 foi vendida com abatimentos sucessivos de 10%+5% +2%. Pergunta-se:
a)Por quanto foi vendida?
b)Qual o percentual total do abatimento?

7 - Na compra de uma mercadoria foi obtido abatimentos sucessivos de 10%+2%. Se o valor pago foi de R$ 110,25, pergunta-se:
a)Qual o valor da mercadoria antes do abatimento?

b)Qual o percentual total do abatimento?

8 - Um produto cujo preço era R$ 712,00,sofreu aumentos sucessivos de 6%+3%. Pergunta-se:

a)A que preço está sendo vendida?

b)Qual foi o percentual total de aumento?

9 - O preço da gasolina foi aumentado, sucessivamente 1,5%+7,2%+4,5% passando a custar R$ 1,30. Qual era o preço antes dos aumentos?

10 - Uma mercadoria sofreu aumentos sucessivos de 14%+9%. Na venda foi concedido um desconto de 10%, pagando o comprador R$ 239,32. Qual era o preço inicial desta mercadoria?



Porcentagem

Lista 1 (lucro e prejuízo)

http://interna.coceducacao.com.br/ebook/pages/images/dot.gif
1 - Uma mercadoria foi comprada por R$ 600,00 e vendida por R$ 400,00. Pede-se:
http://interna.coceducacao.com.br/ebook/pages/images/dot.gif
a) o prejuízo  obtido na transação;
http://interna.coceducacao.com.br/ebook/pages/images/dot.gif
b) a porcentagem de prejuízo sobre o preço de custo;
http://interna.coceducacao.com.br/ebook/pages/images/dot.gif
c) a porcentagem de prejuízo sobre o preço de venda.


02.  O preço de venda de um bem de consumo é R$ 100,00. O comerciante tem um ganho de 15% sobre o preço de custo deste bem. Qual é o  valor do preço de custo?


03.   Um objeto comprado por R$ 80,00 foi vendido por R$ 60,00. De quanto por cento foi o prejuízo?

04.  Um produto custou R$ 10,00 e foi vendido por R$ 12,00. De quanto por cento foi o lucro? 

05.  Um produto comprado por R$ 4,00 é vendido por R$ 6,00. De quanto foi o lucro percentual?

06 - Um objeto comprado por R$ 40,00 é vendido por 20% abaixo do custo. De quanto é o prejuízo?

07.  Um investidor comprou uma casa por R$ 50.000,00 e gastou 80% do custo em reparos. Mais tarde vendeu a casa por R$ 120.000,00. Qual foi o seu lucro? De quanto por cento foi o seu lucro?           

08.  Um negociante ganhou sobre o custo de 32 metros de mercadorias 16% ou R$ 6,40. Qual o custo de cada metro?  

09.   Um negociante ganhou neste ano R$ 1.980,00 de lucro, isto é, 20% mais do que no ano anterior. Qual foi o seu lucro no ano anterior?  


10. Um objeto custou R$ 4,50 e foi vendido por R$ 9,0. Qual o percentual de lucro?  

Números proporcionais

Lista 1 ( Números proporcionais)
1 - Divida 357 em partes diretamente proporcionais a 1, 7 e 13.   
2 - Divida 1650 em partes diretamente proporcionais a 1, 3, 4 e 7.
3- Divida 45 em partes inversamente proporcionais a 3, 4 e 6.
4 - Dividir 1200 em partes proporcionais a 1, 2 e 3.
5 - Dividir o número 1800 em partes inversamente proporcionais  a  1, 3/2 e 2/5.  
6 – A gerência da Concessionária de Automóveis XYZ resolveu distribuir prêmios num total de R$ 180.000,00 para os três vendedores que tiveram o melhor desempenho durante o trimestre passado. O critério adotado foi premiar aqueles que tenham vendido a maior quantidade de certo modelo de automóveis. Os vendedores selecionados foram os que venderam 20, 9 e 7 automóveis. Quanto recebeu cada vendedor?
7 – Durante o período da ouvidoria, a gerência de contas correntes de uma empresa resolveu distribuir prêmios num total de R$ 100.000,00 para os três empregados da área de processamento de contas que tiveram o melhor desempenho durante o ano passado (objeto da ouvidoria). O critério adotado foi premiar proporcionalmente aqueles que tiveram a menor quantidade de erros no processamento das contas (supondo que os 14 empregados da área processaram a mesma quantidade de contas). Os empregados selecionados foram os que tiveram 2, 4 e 7 erros durante o ano. Quanto recebeu cada empregado?
8 - As demissões de três homens (X, Y e Z) implicaram o pagamento de uma verba rescisória na importância total de R$ 36.000,00, que deveria ser repartida por eles, de modo que fossem diretamente proporcionais ao número de meses trabalhados. Quanto deve receber cada um desses três homens (X, Y, Z), se respectivamente trabalharam 50, 70 e 60 meses?
9 – Considere o problema seguinte:
Dividir R$ 448,00 entre duas crianças, uma com 7 anos e a outra com 9 anos. Cada uma delas deverá receber uma quantia diretamente proporcional à sua respectiva idade.

10 - O Sr. Lopes e o Sr. Garcia são parceiros. Lopes investiu inicialmente R$ 22.000,00 e Garcia investiu inicialmente R$ 48.000,00 para montarem um negócio. Eles combinam dividir os lucros, que totalizaram R$ 89.600,00 no primeiro semestre de atividade, em proporção aos seus investimentos iniciais. Que parte do lucro total do negócio receberá cada um deles?

Matemática Financeira


MATEMÁTICA FINANCEIRA








PROFESSOR MARCOS SANTANA













MACEIÓ – AL, 16 DE AGOSTO DE 2015 





Sumário


  • Introdução.........................................................................................08 
  • Números proporcionais.....................................................................10
  • Números diretamente proporcionais.................................................10
  • Números inversamente proporcionais...............................................10
  • Exercício resolvido............................................................................10
  • Lista 1 (números proporcionais)........................................................12
  • Porcentagem......................................................................................13 
  • Porcentagem de uma quantia.............................................................13
  • Taxa percentual..................................................................................14
  • Ponto percentual.................................................................................14
  • A porcentagem na literatura de cordel...............................................15
  • Lista 2 (porcentagem)........................................................................16
  • Lista 3 (complementar 1)...................................................................17
  • Lucro e prejuízo.................................................................................17
  • Resolução de Exercícios (lucro e prejuízo).......................................19
  • Lista 4  (lucro e prejuízo)...................................................................21
  • Aumentos e descontos sucessivos......................................................22
  • Exercício resolvido............................................................................22
  • Lista 5 (Aumentos e descontos sucessivos)........................................23
  • Referências.........................................................................................25



HQs

Porcentagem

A MATEMÁTICA EM CORDEL

Disciplina: Matemática
Professor: Marcos Santana de Lira

Titulo:  A MATEMÁTICA EM CORDEL

Subtítulo: A porcentagem na Literatura de Cordel


Conteúdos: Porcentagem

Objetivos específicos.

ü  Reconhecer uma razão centesimal ou percentual
ü  Aplicar os conhecimentos adquiridos com números racionais para resolução de problemas que envolva interpretação de texto do tipo literatura de Cordel.
ü  Reconhecer juros como a compensação em dinheiro que se recebe ou que se paga por uma quantia depositada ou emprestada.


Objetivos gerais.

ü   Investigar a potencialidade do uso da Literatura de Cordel como recurso didático no ensino de Matemática.
ü   Comparar o texto convencional e o Cordel na compreensão dos conceitos de Matemática.
ü   Investigar a possibilidade de despertar o interesse do aluno pela Literatura de Cordel e pela Matemática.

Recursos materiais e tecnológicos:

Caderno do professor e do aluno, jornais, revistas, panfletos, calculadoras, livro didático, textos interdisciplinares, o uso do whatsapp para direcionar para blogs específicos através de links.
Justificativa:

A utilização da Literatura de Cordel como recurso didático auxiliar no ensino de Ciências é uma ideia inovadora. Neste estudo, buscou-se incorporá-lo ao ensino de Matemática e comparar sua potencialidade em relação ao uso de um texto convencional.
Com a utilização da Literatura de Cordel, o uso da fórmula pode ser evitado, para que o aluno pense sobre a questão e encontre soluções por caminhos próprios.

Procedimentos: Será realizada em 4 etapas.

Etapa - 1

Atividade 1 – O professor deverá lê o cordel (O SABICHANO, Percentagem), depois fazer um questionário para os alunos responde. É importante verificar se os alunos sabe fazer operações com números decimais, sugiro que o professor faça uma pequena e rápida revisão sobre multiplicação de número decimal com o auxilio da literatura de cordel (A CORUJA QUE FALAVA
-Numero decimais). Por exemplo: Lê com os alunos o cordel a seguir. E no final desse cordel responde uma atividade com eles.


A CORUJA QUE FALAVA
Numero decimal

Certa vês uma coruja
Foi pra escola estudar
Ai teve que fazer
Umas contas pra mostrar
E como não estudou
A conta toda errou
Ficou a se lamentar

Mas mesmo assim não parou
E foi pra luta lutar
Pegou os livros e cadernos
E começou estudar
Daqui a pouco a coruja
Tava em primeiro lugar

E o que ela aprendeu
Eu vou aqui lhe mostrar
Transformar um decimal
Em fração veja o que dar
1,5 em fração
da 15 décimo irmão
vamos a conta acertar.

Agora vou lhe mostrar
Como a conta ficou
O numero perde a virgula
E vai pra o numerador
Depois vamos colocar
Veja como vai ficar
Quem é denominador

O denominador é um
Ficando assim bem legal
E tantos zeros quanto for
O numero de decimal
Assim a gente conclui
Este cálculo afinal

Quando tem dois decimais
Nós colocamos dois zeros
Junto do numero um
Fica cem, não há mistério
Assim nós vamos formando
Toda fração que eu espero.


Essa atividade que o professor deverá responder com os alunos em sala de aula, depois da leitura do cordel (sugestão)

1 – Escreva sob a forma de fração os seguintes números:
a) 1,5         b) 0,09          c) 2,134            d) 0,5          e) 0,15        f) 3,2345         h) 3

2 - Escreva sob a forma de razão centesimal (fração com o denominador igual a 100), os seguintes números:
a) 0,34       b) 0,9            c) 3                    d) 0,5          e)1,2            f) 2,134            h) 1,5

Etapa - 2

Atividade - 2 – Os alunos deverá lê o texto e responder um questionário no final do texto.

O SABICHANO
Percentagem

Eu vou contar uma história
De um gato sabichão
Era dono de um venda
E tinha tudo na mão
Sabia como lucrar
A venda de cada pão

Se um pão é dez centavos
Ele queria ganhar
No pão cinquenta por cento
Ia logo calcular
E 50 vezes 10
Cinco centavos é que dar

Pois pra ele calcular
Era só ter atenção
Bastava multiplicar
O valor que tem na mão
Daquele percentual
Que pedia a questão

E toda vez que fazia
Sua multiplicação
Tinha que cortar dois zeros
Para da certo a questão
Senão ficava errado
Aquela operação

O gato todo orgulhoso
Vivia a se gabar
Porque era o mais sábio
Que tinha neste lugar
Todos iam atrás dele
Para a conta calcular


Após a leitura do cordel o professor. Deverá fazer um questionário para os alunos. Exemplo;

1 – Descreva o procedimento numérico usado pelo gato para calcular o quanto ele iria ganhar em cada pão, conforme o texto (O SABICHANO – Percentagem)

2 – Calcule as porcentagens indicadas.
a) 40% de R$ 80,00
b) 25% de R$ 20,00
c) 7% de R$ 300,00
d) 10% de R$ 460,00
e) 20% de R$ 150,00

 3 – Uma família tem rendimento mensal de R$ 2100,00. Determine quanto essa família gasta em cada um dos  itens. E quanto sobrou?
a) 26% em alimentos
b) 25% em aluguel
c) 18% em transporte
d) 12% em saúde

Etapa - 3

Atividade 3 – Os alunos deverão pesquisar sobre a história de cordel e fazer ou escrever um cordel relacionado à matemática. E entrega ao professor como trabalho. O professor pode oferece aos alunos uma lista de blogs para pesquisa como sugestão:



Etapa – 4

Atividade – 4 – Os alunos irão fazer uma prova com os assuntos abordados . O objetivo dessa prova não é classifica  (aprovar ou reprovar), e se de analisar, pesquisar e diagnosticar se o aluno compreendeu o assunto abordado.

Avaliação:

 Será contínua durante todo o processo. O aluno será observado quanto a sua participação nas atividades desenvolvidas em sala, em casa, trabalhos em grupo. Uma prova formal com questões que propiciem ao aluno resolver e identificar porcentagens com as estratégias aprendidas.


Compartilhar nas redes sociais